Skip to content


Configuring Server and Module Settings

How are settings provided to the Server and Modules?

Each module is passed a collection of settings when it is started. These settings come from multiple sources: the server itself, settings files, environment variables and the command line. The settings in each source will overwrite existing settings, so sources are loaded in order of most general to most specific to allow you to fine tune settings to specific targets

  1. All appsettings.json files under the /server directory. These are loaded in order:

    1. appsettings..json
    2. appsettings.mode.json file, where mode = release or development.
    3. appsettings.platform.json file, where platform = windows, linux, macOS, or each of these with -arm64 for Arm variants, or docker.
    4. appsettings.platform.mode.json

    Settings in the appsettings.json files are typically server related.

  2. All modulesettings.json files within the module's folder, loaded in the following order:

    1. modulesettings.json
    2. modulesettings.mode.json where mode = release or development.
    3. modulesettings.os.json where os = windows, linux, macOS
    4. modulesettings.os.mode.json
    5. modulesettings.os.architecture.json where architecture = x86_64 or arm64
    6. modulesettings.os.architecture.mode.json
    7. modulesettings.docker.json
    8. modulesettings.docker.mode.json
    9. modulesettings.device.json where device = raspberrypi, orangepi or jetson
    10. modulesettings.device.mode.json

    Settings in the modulesettings.json files are typically module related.

  3. If you change a module or server setting via the API (or view the dashboard) these settings will be saved in a settings 'override' file in %PROGRAMDATA%\modulesettings.json and %PROGRAMDATA%\serversettings.json. The PROGRAMDATA location will be

    • Windows: C:\ProgramData\CodeProject\AI
    • Linux / Docker: /usr/share/CodePrpoject/AI
    • macOS: /Library/Application Support/CodeProject/AI
  4. Environment variables

See Individual Module settings for information on environment variables for modules.

  1. Command line variables

Changing a Module's Settings

There are multiple ways in which a module can be configured

  1. Editing the modulesettings.json file (or files) in the module's directory
  2. Setting environment variables on the system
  3. Using command line parameters (if running as a Windows application or service)
  4. Setting Docker run parameters (if running the Docker image)
  5. Via the Settings API

There are also global settings stored in the server's appsettings.json file that provides settings shared by all modules.

We will go through the naming convention for settings, the global server settings, individual module settings and legacy override settings, then finish with a walk through of how to actually change these settings.

The Naming Convention

To change a setting we need to refer to it by name, and that name depends on the context of where we are making the change.

If changing a setting in the modulesettings.json file, then the setting is referenced within the Json struncture by name

For example, the MODEL_SIZE setting for the ObjectDetectionYolo module would be in the modules/ObjectDetectionYolo/modulesettings.json file:

JSON
{
  "Modules": {
    "ObjectDetectionYolo": {
      ...
      "EnvironmentVariables": {
        "MODEL_SIZE": "Medium"
        ...
      }
    }
  }
}

If setting a value via the command line, as an environment variable, or when launching a Docker container, the setting is accessed via its fully qualified name.

For common module settings the form is --Modules:<ModuleId>:Setting-Name=Value

For module specific settings the form is --Modules:<ModuleId>:EnvironmentVariables:Setting-Name=Value

For legacy overrides use the format --Setting-Name=Value

The current pre-installed modules are

Module ModuleId
Face Processing FaceProcessing
Object Detection (.NET, ONNX) ObjectDetectionNet
Object Detection (Python, PyTorch) ObjectDetectionYolo

and downloadable (installable at runtime) modules are

Module ModuleId
Background Remover BackgroundRemoval
Cartooniser Cartooniser
Image Super Resolution SuperResolution
Licence Plate reader ALPR
Object Detection (Coral) ObjectDetectionCoral
Object Detection (Rockchip) ObjectDetectionYoloRKNN
Object Detection (YOLOv5 3.1) YOLOv5-3.1
Optical Character Recognition OCR
Portrait Filter (background blur) PortraitFilter
Scene Classification SceneClassification
Text Sentiment Analysis SentimentAnalysis
Text Summary TextSummary
Training (YOLO) TrainingYolov5

Macros for settings

There are a number of macros that can be used in string values when providing values. These macros will be replaced by their actual value at runtime.

Macro Description
%ROOT_PATH% The path to the application's root. For a default Windows install this is C:\Program Files\CodeProject\AI. For Docker this is /app
%RUNTIMES_PATH% The path to the installed, shared runtimes. Default is /src/runtimes in development, /runtimes in production (relative to ROOT_PATH)
%MODULES_PATH% The path to the Analysis modules. Default is /src/AnalysisLmodulesayer in development, /modules in production (relative to ROOT_PATH)
%CURRENT_MODULE_PATH% The path to the current module relative to %ROOT_PATH%
%PLATFORM% windows, macos, macos-arm64, linux, linux-arm64
%OS% Windows, macOS or Linux
%DATA_DIR% The path to the directory that contains persisted data. This default to
C:\ProgramData\CodeProject\AI (Windows)
/usr/share/CodePrpoject/AI (Linux)
/Library/Application Support/CodeProject/AI (macOS)
%PYTHON_RUNTIME% Python37 or Python39, Depending on the Runtime value in modulesettings.json
%PYTHON_BASEPATH% The path to the root of the virtual environment for the given version

The Settings

Global (server) settings

Use the naming format Modules:<ModuleId>:EnvironmentVariables:Setting-Name=Value

Parameter Default Description
CPAI_PORT 32168 The port that both client apps and back-end modules communicate with the server
CPAI_APPROOTPATH %ROOT_PATH% The absolute path to the application root directory

eg Command line parameter:
--Modules:BackgroundRemoval:EnvironmentVariables:CPAI_PORT=32168

eg System environment variable set Modules:BackgroundRemoval:EnvironmentVariables:CPAI_PORT=32168

Common Module settings

Use the naming format Modules:<ModuleId>:<Section>:Setting-Name=Value. For example, AutoStart in the LaunchSettings section for module "TextSummary" will be specified as Modules:TextSummary:LaunchSettings:AutoStart.

Each module will have the following settings

Section:Parameter Default Description
LaunchSettings:AutoStart varies True or False. Determines whether or not this module is started automatically when the server starts
LaunchSettings:Parallelism 0 The number of concurrent execution units (threads, tasks, processes - depends on the module and language) to launch. Default of 0 means "Number of CPUs - 1"
LaunchSettings:PostStartPauseSecs 0 (CPU)
5 (GPU)
The number of seconds to pause after starting this module. This provides initialisation time
GpuOptions:InstallGPU false True or False. Determines whether or not this module is installed with GPU support. If this is False, then EnableGPU will have no effect
GpuOptions:EnableGPU varies True or False. Whether or not this module should enable GPU support. Setting to False means GPU support will be disabled. Note that GPU support depends on the module and the platform. A module is not guaranteed to support GPUs, or to support GPUs on all platforms
GpuOptions:AcceleratorDeviceName Module dependant, but for modules that use CUDA, for example, this could be "cuda:0" or "cuda:1" to specify the first or second CUDA enabled GPU
GpuOptions:HalfPrecision Module dependant, but for modules that use CUDA this specifies whether half-precision operations should be used. Valid only for cards with CUDA compute capability >= 6.0

eg Command line parameter:
--Modules:TextSummary:LaunchSettings:AutoStart=true

eg System environment variable set Modules:TextSummary:LaunchSettings:AutoStart=true

Individual Module settings

Many modules have individual settings that are changed via environment variables. Use the naming format Modules:<ModuleId>:EnvironmentVariables:Setting-Name=Value.

Object Detector (Yolo)

Key Default Description
MODELS_DIR %MODULES_PATH%\ObjectDetectionYolo\assets The path to the folder containing model files
CUSTOM_MODELS_DIR %MODULES_PATH%\ObjectDetectionYolo\custom-models The path to the folder containing custom model files
MODEL_SIZE Medium The detection model size. Tiny, Small, Medium or Large. This setting has no effect for custom models.
USE_CUDA True Whether or not to use CUDA if available

For example, to set the MODEL_SIZE to Large via the command line use

--Modules:ObjectDetectionYolo:EnvironmentVariables:MODEL_SIZE=Large

To set the model directory to point to a different set of custom models, use

--Modules:ObjectDetectionYolo:EnvironmentVariables:CUSTOM_MODELS_DIR="C:\My Custom Models"

Object Detector (.NET)

Key Default Description
MODEL_SIZE Medium The detection model size. Small, Medium or Large.

For example, to set the MODEL_SIZE to Large via the command line use

--Modules:ObjectDetectionNet:EnvironmentVariables:MODEL_SIZE=Large

Scene Classifier

Key Default Description
MODELS_DIR %MODULES_PATH%\Vision\assets The path to the folder containing model files
MODE MEDIUM The detection resolution. Low, Medium or High

For example, to set the MODE to High use

--Modules:SceneClassification:EnvironmentVariables:MODE=High

Face Detection

Key Default Description
MODELS_DIR %MODULES_PATH%\Vision\assets The path to the folder containing model files
MODE MEDIUM The detection resolution. Low, Medium or High
DATA_DIR %DATA_DIR% The path to the folder containing persisted face data
USE_CUDA True Whether or not to use CUDA if available

For example, to set the MODE to High use

--Modules:FaceProcessing:EnvironmentVariables:MODE=High

These environment variables are shared by all Face processing modules

Text Summary

For environment variables, the parameter prefix is: --Modules:TextSummary:EnvironmentVariables:

Key Default Description
NLTK_DATA %MODULES_PATH%\TextSummary\nltk_data The path to the folder containing the model file

For example, to set the NLTK_DATA to 'my-data' use

--Modules:TextSummary:EnvironmentVariables:NLTK_DATA=my-data

Global legacy setting overrides

In order to provide legacy support for some modules a number of command line parameters are supported that provide overrides for multiple modules.

These settings apply to Face Processing, Scene Classification, and Object Detection modules only.

Use the format --Setting-Name=Value on the command line, or Setting-name=Value as a system environment variable.

Parameter Default Description
PORT 32168 (standard)
5000 (alt for Windows, Linux)
5500 (alt for macOS)
The port on which the server listens for requests
MODE Medium The detection mode for vision operations. High, medium or low resolution inference
DATA_DIR C:\ProgramData\CodeProject\AI (Windows)
/usr/share/CodePrpoject/AI (Linux)
/Library/Application Support/CodeProject/AI (macOS)
The directory containing persisted data for face recognition
MODELSTORE-DETECTION
MODELSTORE_DETECTION
%MODULES_PATH%\\ObjectDetectionYolo\\custom The directory containing the custom AI models
VISION-FACE
VISION_FACE
True Whether face detection operations are enabled
VISION-SCENE
VISION_SCENE
True Whether scene classification is enabled
VISION-DETECTION
VISION_DETECTION
True Whether object detection operations are enabled
CUDA_MODE True Whether CUDA support is to be enabled

Where %MODULES_PATH% is a macro that expands to be the absolute path to the analysis modules directory. By default this is C:\Program Files\CodeProject\AI\modules for a Windows install, and /app/modules for Docker.

eg --MODE=Medium

Making changes to settings

Option 1: Editing the modulesettings.json files

Proceed with caution

While configuring modules is very straightforward, if you make a mistake you may cause a module to no longer function correctly. Always make a backup of any files you modify just in case you need to undo your changes.

The modules included with CodeProject.AI are configued via the modulesettings.json files in the module's directory, typically located at C:\Program Files\CodeProject\AI\modules\<ModuleName>\modulesettings.json, where ModuleName is the name of the module.

There are variants of this file for each supported operating system, in the form modulesettings.<platform>.json, where platform will be windows, macos, macos-arm, linux or docker.

To read more about the modulesettings file, please refer to the developer's guide

To edit values simply open this file in a text editor such as Notepad or Notepad++, make your changes and then save the file. Please, please, please make a backup first.

Option 2: Setting environment variables on the system

For Windows:

  • Click the Start menu and type 'Environment'. Select 'Edit the system Environment variables'.
  • Click 'Environment variables'
  • Click either User or System variables. User variables will be in effect only when you are logged in. System variables are in effect for everyone.
  • Click New to add a new variable name and value, or click an existing variable, and then click Edit to change its name or value.

For macOS:

  • Open a terminal window and type touch .zprofile to ensure a .zprofile file exists (This assumes you are using zsh in macOS. For bash use .bash_profile)
  • Run nano .profile to edit the file
  • Add or edit variables in the form export MY_VARIABLE='my value'
  • Save and close the file
  • Run source .zprofile to force the changes to be loaded

Option 3: Restarting the CodeProject.AI service and supplying parameters

By default the Windows installer will install CodeProject.AI as a Windows Service that will start when Windows starts, and restart automatically on failure. If you wish to customise settings then you can opt to start the CodeProject.AI Server's service manually and pass command line parameters to override settings

First, stop the service from a terminal:

Command line
sc stop "CodeProject.AI Server"

Then restart the service, passing in the parameters you wish:

Command line
sc start "CodeProject.AI Server" --MODE=Low

This will restart the service and set the AI mode for Vision inference to "low".

Option 4. Docker

Refer to the instructions for launching a Docker image.

The command to run the Docker image is

Command line
docker run --name CodeProject.AI-Server -d -p 32168:32168 ^
 --mount type=bind,source=C:\ProgramData\CodeProject\AI\docker\data,target=/etc/codeproject/ai ^
 --mount type=bind,source=C:\ProgramData\CodeProject\AI\docker\modules,target=/app/modules ^
   codeproject/ai-server

To have the Docker manager pass settings to CodeProject.AI, use the -e setting=value option. For instance, to pass in MODE=Low you would use:

Command line
docker run -e MODE=Low --name CodeProject.AI-Server -d -p 32168:32168 ...
(or use port 5000 for legacy users)

The settings that can be changed in Docker are the same that are avaiable in a native Windows installation. See the API documentation for module specific settings which are set using the form Modules:ModuleName:Setting=value like

Command line
docker run -e Modules:TextSummary:AutoStart=False --name CodeProject.AI-Server ...
Also see the section Global Command Line Parameters for a list of global parameters that can be modified using the form --setting=value

Option 5. Via the Settings API

As of CodeProject.AI 1.5.7.3 there is an API that allows you to modify module settings on the fly.

The endpoint is:

POST: localhost:32168/v1/settings/<ModuleId>

where moduleID is given by

The current pre-installed modules are

Module ModuleId
Face Processing FaceProcessing
Object Detection (.Net, ONNX) ObjectDetectionNet
Object Detection (Python, PyTorch) ObjectDetectionYolo
 
Background Remover BackgroundRemoval
Cartooniser Cartooniser
Image Super Resolution SuperResolution
Licence Plate reader ALPR
Object Detection (Coral) ObjectDetectionCoral
Object Detection (Rockchip) ObjectDetectionYoloRKNN
Object Detection (YOLOv5 3.1) YOLOv5-3.1
Optical Character Recognition OCR
Portrait Filter (background blur) PortraitFilter
Scene Classification SceneClassification
Text Sentiment Analysis SentimentAnalysis
Text Summary TextSummary
Training (YOLO) TrainingYolov5

To set the value of a setting for a module, you specify the module via the route (the <ModuleId> bit), set the name as the undecorated setting name (eg MODEL_SIZE, or CPAI_PORT), and the value.

So to set the model size to Small (for instance) for the YOLO Object Detection module, you would do

POST: localhost:32168/v1/settings/ObjectDetectionYolo

and pass name = 'MODEL_SIZE', value = 'Small':

JavaScript
var myHeaders = new Headers();
myHeaders.append("Content-Type", "application/x-www-form-urlencoded");

var urlencoded = new URLSearchParams();
urlencoded.append("name", "MODEL_SIZE");
urlencoded.append("value", "Small");

var requestOptions = {
  method: 'POST',
  headers: myHeaders,
  body: urlencoded
};

fetch("localhost:32168/v1/settings/objectdetectionyolo", requestOptions)
  .then(response => response.text())
  .then(result => console.log(result))
  .catch(error => console.log('error', error));

The settings that can changed are listed in the Common Module settings and the Individual Module settings sections at the top of this page.