Click here to Skip to main content
15,946,342 members
Articles / Artificial Intelligence

KReversi, Learn to Implement Minimax Algorithm by Creating a Reversi Bot

Rate me:
Please Sign up or sign in to vote.
5.00/5 (13 votes)
7 Dec 2022MIT20 min read 11.1K   466   13   1
This game allows you to create a Minimax bot, then play reversi with it.
This program was developed because I couldn't find one with the features I needed when looking for a Revesi/Othell game.

Animation

Introduction

There are many Reversi programs already, and I chose to develop this program because I couldn't find one with the features I needed when looking for a Revesi/Othell game.

Features

  1. Supports Mode Human vs Human, Human vs Bot, Bot vs Bot
  2. Supports board editor
  3. Supports Bot creator. You can choose an image and customize an AI score that will be used to evaluate the board.
  4. Can show the bot's last move Minimax search tree
  5. Can change the profile picture of Human Player1 and Human Player2
  6. Can navigate the move
  7. Support Dark Mode

File Extensions Used by the Program

  1. .brd is used as board information.
  2. .bot is used as bot information.
  3. .rev is used as game save information, Game information retains the history of the move, which is what distinguishes it from a board game, so you can navigate it via the navigate control.

How to Play

The rule of the game is exactly the same as a normal Reversi game.

The Concept

File Structure of the Project

File Structure

Graphic

In this section, I would like to talk about the classes responsible to render the graphic, but I will not mention anything related to the Board Editor or Bot Creator yet.

The Game Board

UIControl01

UIControl01
The board also can display numbers.

UI\PictureBoxBoard.cs

This is a class that inherits from PictureBox control.
It is responsible to display the Reversi board. This class itself consists of the control called pictureBoxTable.
The pictureBoxTable control will be the one that renders the table can disk from the pictureBoxTable_Paint() method.
The pictureBoxTable_Paint() method reads the board information from this class to
draw the table and disk.

This is the logic for drawing the board.

  1. There is an array of 64 Rectangles. We create these 64 Rectangles to store the position of the cells on the board.

  2. This method will call:

  • DrawBoard() to draw the board table
  • DrawIntersection() as its names suggest
  • DrawDisk() just draws the disk
  • DrawRedDot() to show which is the last put position
  • DrawDiskBorder() to show which cell can be put
  • DrawNumber() - This method is for when we need to display the score of the cell.
    All of the drawings in this method just use basic GDI+ methods such as FillEllipse(), DrawEllipse(), DrawRectangles()

There are no images being used for board drawing. These are the logic for drawing the notation:

  1. Just loop from 0 to 7.
  2. using DrawString() method to draw the string
    This control has PictureBoxBoard_Paint() method to render the notation.
C#
public enum CellImageEnum
{
   WhiteCell,
   BlackCell,
   BlankCell,
   BlankCellWithRed  //To show which is the last cell that the disk was put
}
public enum BoardModeEnum
{
   PlayMode,
   EditMode
}
public Boolean IsSmallBoard { get; set; } = false; // Support display the board
                                                   // as small size
public Boolean IsHideLegent { get; set; } = false;
public Boolean IsDrawNotion { get; set; } = true;  // Can hide the notation (A1-H8)

public event PictureBoxCellClick CellClick;
private void PictureBox1_MouseDown(object sender, MouseEventArgs e)
{
   //Must be a left button
   if (e.Button != MouseButtons.Left)
   {
       return;
   }

   int X = e.X;
   int Y = e.Y;
   int RowClick = Y / CellSize;
   int ColClick = X / CellSize;
   if (RowClick >= NoofRow ||
       ColClick >= NoofRow ||
       RowClick < 0 ||
       ColClick < 0)
   {
       //Row and Column click must be in range.
       return;
   }

   if (CellClick != null)
   {
       //Raise event.
       CellClick(this, new Position(RowClick, ColClick));
   }
}
private void DrawNumber(Graphics g, int Number, Rectangle rec)
{
    /*This method is for drawing a number in case of
      showing a score value from evaluate function.
    */
    Rectangle r = rec;
    r.Height -= 10;
    r.Width -= 10;
    r.X += 10;
    r.Y += 15;

    Font SegoeUIFont = new Font("Segoe UI", 14, FontStyle.Bold);
    Color NumberColor = Color.FromArgb(150, 180, 180);
    String NumberText = "+" + Number;
    if(Number < 0)
    {
      //Negative number does not need "+" prefix.
      NumberText =  Number.ToString ();
      NumberColor = Color.FromArgb(255, 199, 79);
    }
    //Create Brush and other objects
    PointF pointF = new PointF(r.X, r.Y);
    SolidBrush solidBrush = new SolidBrush(NumberColor );
    //Draw text using DrawString
    g.DrawString(NumberText ,
      SegoeUIFont,
      solidBrush, pointF );

    solidBrush.Dispose();
}
private void DrawDisk(Graphics g, CellImageEnum CellImage, Rectangle rec)
{
    if (CellImage == CellImageEnum.BlankCell)
    {
      return;
    }
    Rectangle r = rec;
    //Reduce the size of Rectangle
    r.Height -= 10;
    r.Width -= 10;
    r.X += 5;
    r.Y += 5;
    DrawDiskBorder(g, r);

    Color colorDisk = Color.White;
    if (CellImage != CellImageEnum.WhiteCell)
    {
      colorDisk = Color.Black;
    }

    using (Brush brushDisk = new SolidBrush(colorDisk))
    {
      g.FillEllipse(brushDisk, r);
    }

    Color diskBorderColor = Color.Black;

    //Uncomment this line in case you would like white disk to have white color border
    //diskBorderColor = colorDisk
    using (Pen penDisk = new Pen(new SolidBrush(diskBorderColor)))
    {
     g.DrawEllipse(penDisk, r);
    }
}
private void DrawDiskBorder(Graphics g, Rectangle rec)
{
    //Reduce the size of Rectangle
    Rectangle r = rec;
    r.Height -= 10;
    r.Width -= 10;
    r.X += 5;
    r.Y += 5;
    using (Pen penDisk = new Pen(DiskBorderColor))
    {
      g.DrawEllipse(penDisk, r);
    }
}
private void DrawBoard(Graphics g, Rectangle[] arrRac)
{
    //This method just draw 64 array of Rectangle objects.

    g.Clear(BoardColor);
    g.DrawRectangles(PenBorder, arrRac);
    Rectangle rectangleBorder = new Rectangle(0, 0, CellSize * 8, CellSize * 8);
    using(Pen penBigBorder=new Pen ( Color.Black, 4))
    {
      g.DrawRectangle(penBigBorder, rectangleBorder);
    }
}

The Board Information

The Board information will display the picture of the Player and Name and the number of disks for each side. They are just a group of controls on FormGame, that will be used in the ReverseUI class.

The Navigator Control and the History of the Moves

These are just controls in FormGame that will be used in ReverseUI class.
The Navigator control consists of four buttons, the move history is a tableLayoutPanel that
contain a Link label.

Theme.cs

This class just contains the control color information.

C#
public class Theme
{
    public Color ButtonBackColor { get; set; }
    public Color ButtonForeColor { get; set; }
    public Color LabelForeColor { get; set; }
    public Color FormBackColor { get; set; }
    public Color InputBoxBackColor { get; set; }
    public Color LinkLabelForeColor { get; set; }
    public Color LinkLabelActiveForeColor { get; set; }
    public Boolean IsFormCaptionDarkMode { get; set; } = true;

    public Color MenuBackColor { get; set; }
    public Color MenuHoverBackColor { get; set; }
    public Color MenuForeColor { get; set; }
}

This Program supports DarkMode, we use Global class to have LightTheme, DarkTheme<br /> Then, when each of the forms loads, it will access Global.CurrentTheme, then uses themeUtil
to set the appearance of the controls.

This is an example of using themUtil object.

C#
themeUtil.SetLabelColor(theme, lblNumberofBlackDisk,
                        lblNumberofWhiteDisk,
                        lblPlayer1Name,
                        lblPlayer2Name)
         .SetButtonColor(theme, btnFirst,
                        btnNext,
                        btnPrevious,
                        btnLast)
         .SetMenu (this.menuStrip1)
         .SetForm(this);

FormGame.cs

This class is the main form, it contains the PictureBoxBoard and the Navigator controls and history of moves.

UI.Dialog.cs

All of the code to show dialog belongs here.

The Important Classes

AI.Board.cs

This is the class that holds the board information.

Fields and Properties

  • int[,] boardMatrix we use simple 2D array to contain the disk, Black =-1, Blank =0, White =1
  • BoardPhase has three phases: Beginning, Middle, and EndGame. This value will be used by AI, it will determine which set of score values it needs to evaluate the board score.
  • NumberofLastFlipCell every time we flip the cell, we keep the number of the cells that were flipped
  • CurrentTurn the current turn
  • generateMoves() generates available moves
  • PutValue() just put the cell value
  • IsLegalMove() check to see if the position is valid
  • SwitchTurn() just switch the turn
  • IsTherePlaceToPut() - This method will return false if there is no place to put it; otherwise, it will return true.

These are the Board constructors.

C#
public Board()
{
    boardMatrix = new int[8, 8];
    SetCell(3, 3, CellValue.White);
    SetCell(3, 4, CellValue.Black);
    SetCell(4, 3, CellValue.Black);
    SetCell(4, 4, CellValue.White);
    listPutPosition.Clear();
}

public Board(Board OriginalBoard)
{
    boardMatrix = new int[8, 8];
    Array.Copy(OriginalBoard.boardMatrix, this.boardMatrix,
               this.boardMatrix.Length);
    this.CurrentTurn = OriginalBoard.CurrentTurn;
    if (OriginalBoard.LastPutPosition != null)
    {
        this.SetLastPutPosition(OriginalBoard.LastPutPosition.Clone());
    }
}

AI.BoardValue.cs

This class contains the board information, when we would like to save the board or create a custom board. We store the value in this class and then Serialize it.

ReverseUI.cs

This class implements the IUI interface, so it must have these methods:

C#
void RenderHistory();
    void RenderNumberofDisk(int WhiteDisk, int BlackDisk);
    void ShowBoardAtTurn(int NumberofTurn);
    void MoveBoardToNextTurn();
    void MoveBoardToPreviousTurn();
    void RenderBoard();
    void SetGame(KReversiGame game);
    void RemoveGame();
    void BlackPutCellAt(Position position);
    void WhitePutCellAt(Position position);
    void Initial();
    void ReleaseUIResource(); //To make sure there is no event leak
    void InformPlayer1NeedtoPass();
    void InformPlayer2NeedtoPass();
    void InformGameResult(KReversiGame.GameResultEnum result);

// Any event the begin with MoveBoard relate to navigation.
    event EventHandler MoveBoardToNextTurnClick;
    event EventHandler MoveBoardToPreviousTurnClick;
    event EventHandler MoveBoardToFirstTurnClick;
    event EventHandler MoveBoardToLastTurnClick;
    event PictureBoxBoard.PictureBoxCellClick CellClick;
    event EventInt MoveBoardToSpecificTurnClick;
    event EventHandler ContinuePlayingClick;

KReversiGame.cs

This class contains UIU object and board object. It works as a glue between these two objects.
This program uses Inversion of control
https://en.wikipedia.org/wiki/Inversion_of_control
It means the UI part will not know anything much about the game data when we click on a cell.
It will not check if this cell is empty or if it is a valid position or not, it will just notify the game that this specific cell was clicked, then the game object will determine what to do next.

For example, the game object will check if it is a valid position and then it will call a board object to update the value and then it will notify the UI to let them know that it needs to update or it will call the UI to update itself directly.

Both BotPlayer1MoveDecision() and HumanPlayer1MoveDecision() will call Player1Move(). The difference is BotPlayer1MoveDecision will call minimaxbot.MakeMove(board) to get the bot position, while HumanPlayer1MoveDecision() will get the position from user input.

Player1Move() - verify if the position is valid

  • Put the disk, then switch turn
  • Handle in case of passes
  • Store board to history
  • Tell UI to render a board
  • Check if the game result is finished
C#
public enum PlayerMode
{
    FirstHuman_SecondHuman = 0,
    FirstHuman_SecondBot = 1,
    FirstBot_SecondHuman = 2,
    FirstBot_SecondBot = 3
}
public enum GameStatusEnum
{
    Pause=-1,
    Playing = 0,
    Finished = 1
}

public enum GameResultEnum
{
    NotDecideYet=-2,
    BlackWon = -1,
    Draw = 0,
    WhiteWon = 1,
}

public void BotPlayer1MoveDecision(out bool CanMove)
{
	CanMove = false;
	if (this.Player1 == null)
	{
		throw new Exception("Please Assign Player1bot");
	}
	if (this.GameState == GameStatusEnum.Finished ||
		this.GameState == GameStatusEnum.Pause)
	{
		return;
	}
	if (!IsPlayer1Bot)
	{
		return;
	}
	if (IsPlayer1NeedtoPass())
	{
		//This player1 is bot no need to inform
		//UIBoard.InformPlayer1NeedtoPass();
		board.SwitchTurnDueToPlayerPass();
	}
	else
	{
		Player1BotBeginToThink?.Invoke(this, new EventArgs()); // To make UI change 
                                             // mouse cursor to sandy clock
		if (Player1 is MiniMaxBotProto)
		{
			MiniMaxBotProto minimaxBot = (MiniMaxBotProto)Player1;
			// minimaxBot.
			//For Player1 IsKeepLastDecisionTree is always false;
			minimaxBot.IsAllowRandomDecision = this.IsAllowRandomDecision;
			minimaxBot.IsKeepLastDecisionTree = false;// this.IsKeepLastDecisionTree;
			minimaxBot.IsUsingAlphaBeta = this.IsUsingAlphaBeta;
		}
		Position botPosition = Player1.MakeMove(board);
		Player1Move(botPosition, out CanMove);
		if (!CanMove)
		{
			throw new Exception("There must be something wrong with Player 1 Move");
		}
		Player1BotFinishedToThink?.Invoke(this, new EventArgs()); // To make UI 
                                                // change mouse cursor back
	}
	OnPlayer1Moved();
}
public void HumanPlayer1MoveDecision(Position pos, out bool CanMove)
{
	CanMove = false;
	if (this.GameState == GameStatusEnum.Finished ||
		this.GameState == GameStatusEnum.Pause)
	{
		return;
	}
	if (IsPlayer1Bot)
	{
		return;
	}

	Player1Move(pos, out CanMove);

	OnPlayer1Moved();
}

private void Player1Move(Position pos, out Boolean CanMove)
{
	CanMove = false;
	if (this.board.CurrentTurn != Player1Color)
	{
		return;
	}
	if (!this.board.IsLegalMove(pos, Player1Color))
	{
		return;
	}

	board.PutAndAlsoSwithCurrentTurn(pos, this.Player1Color);
	CanMove = true;
	boardHistory.IndexMoveAdd();
	Boolean CanPlayer2MakeMove = board.generateMoves(Player2Color).Count > 0;
	Boolean CanPlayer1MakeMove = board.generateMoves(Player1Color).Count > 0;

	Board.PlayerColor PlayerColorForNextTurn = this.Player2Color;
	if (!CanPlayer2MakeMove)
	{
		if (CanPlayer1MakeMove)
		{
		        //Passes
			PlayerColorForNextTurn = this.Player1Color;
		}
	}

	Board boardForHistory = (Board)this.board.Clone();
	boardForHistory.CurrentTurn = PlayerColorForNextTurn;
	AddCurrentBoardToHistory(boardForHistory, pos, this.Player1Color);
	UIBoard.RenderBoard();

	if (!CanPlayer2MakeMove)
	{
		if (!CanPlayer1MakeMove)
		{
		    //Both Player cannot make move
			this.GameState = GameStatusEnum.Finished;
			CalculateResult();

			UIBoard.InformGameResult(this.GameResult);
		}
		else
		{
			if (!IsPlayer2Bot || !IsPlayer1Bot)
			{
				this.UIBoard.InformPlayer2NeedtoPass();
			}
			board.SwitchTurnDueToPlayerPass();
		}
	}
}

protected virtual void OnPlayer1Moved()
{
	UIBoard?.RenderHistory();
	NextTurn();
}

private void NextTurn()
{
	if (this.GameState != GameStatusEnum.Playing)
	{
		return;
	}
	if (this.IsPlayer1NeedtoPass() && this.IsPlayer2NeedtoPass())
	{
		this.GameState = GameStatusEnum.Finished;
		CalculateResult();
		this.UIBoard.InformGameResult(this.GameResult);
		return;
	}
	bool CanMove = false;
	if (this.board.CurrentTurn == Board.PlayerColor.Black)
	{
		if (this.IsPlayer1Bot)
		{
			BotPlayer1MoveDecision(out CanMove);

			return;
		}
		else
		{
			if (this.IsPlayer1NeedtoPass())
			{
				this.UIBoard.InformPlayer1NeedtoPass();
				this.board.SwitchTurnDueToPlayerPass();
				this.UIBoard.RenderBoard();
			}
		}
		return;
	}

	if (this.IsPlayer2Bot)
	{
		BotPlayer2MoveDecision(out CanMove);
		return;
	}
	else
	{
		if (this.IsPlayer2NeedtoPass())
		{
			this.UIBoard.InformPlayer2NeedtoPass();
			this.board.SwitchTurnDueToPlayerPass();
			this.UIBoard.RenderBoard();
		}
	}
}

Seq_Diagram

This diagram is a simplified version of a sequence diagram. It is just a simplified version because:

  1. Click(), CellClick() UIBoard_CellClick() are events that cannot be displayed on the sequence diagram easily.
  2. The pictureBoxBoard is not an actual object that listens to Click() event, it is another picturebox that pictureBoxBoard contains.

BoardHistory.cs

This is a class that keeps track of the position each time the disk is put. It also has the methods to navigate through these histories.

GameBuilder.cs

Since this game is quite complicated, so we need the GameBuilder object to create a game object instead of using a constructor.

This is an example of how to create a game.

C#
game = GameBuilder.Builder.BeginBuild
                  .GameMode(KReversiGame.PlayerMode.FirstHuman_SecondBot)
                  .BotPlayer1Is(BotPlayer1) // BotPlayer1 can be null.
                  .BotPlayer2Is(BotPlayer2) // BOtPlayer2 can be null.
                  .Player1NameIs(Global.Player1Name)
                  .Player2NameIs(Global.Player2Name)
                  .AllowRandomDecision (Global.CurrentSettings.IsAllowRandomDecision) 
                  .UsingAlphaBeta (Global.CurrentSettings.IsUsingAlphaBeta) 
                  .KeepLastDecisionTree 
                   (Global.CurrentSettings.IsKeepLastDecisionTree) // In case we need 
                                                            //to view the minimax tree
                  .OpenWithBoardFile(CurrentBoardFileName)  //Path of .brd file, 
                                                            //it can be blank in case 
                                                            //of a new game.
                  .OpenWithGameFile(CurrentGameFileName)    //Path of .rvi file, 
                                                            //it can be blank 
                                                            //in case of a new game.
                  .FinishBuild();

Utility.SerializeUtility.cs

This is the class we use to Serialize and Deserialize any kind of file/object.

Utility.UI.cs

It has methods related to making a Dark mode.
Explain the important code.
These are the important codes that do not relate to AI.

AI.Board.IsLegalMove()

  1. If the row and column are not in the value range, return false;
  2. If Cell is not a blank cell, return false;
  3. When we tried to loop for 8 directions to check the next cell, we don't need to have 8 duplicate sets of code.
    We can just use the loop for row and col like this:
    They get 9 unique results from this nested loop.
    We only need 8 of them for the row and column change in each direction.

Loop Row from -1 to 1 Loop Col from -1 to 1

  • Row -1, Col -1 means North West.
  • Row -1, Col 0 means North.
  • Row -1, Col 1 means North East.
  • Row 0, Col -1 means West.
  • Row 0, Col 0 mean there is no change, just skip
  • Row 0, Col 1 means East.
  • Row 1, Col 1 means South East.
  • Row 1, Col 0 means South.
  • Row 1, Col -1 means South West.

 

Direction

In this picture, the middle cell represents a cell we need to check. It is in row 0, column 0.
We know that North West cell: Row is -1, Col is -1, we get it from 0 -1, 0 -1
We know that North cell : Row is -1, Col is 1, we get it from 0 -1, 0 -0 and so on.

For the condition, the cell must have at least one opponent cell first.
Then it must have the same side cell.

UIControl04

In this picture, only D1 is a valid position for a black turn.

C#
public Boolean IsLegalMove(Position Position,  PlayerColor cValue)
{
    if (Position.Row < 0 ||
        Position.Col < 0 ||
        Position.Row > this.boardMatrix.GetLength (0)-1 ||
        Position.Col > this.boardMatrix.GetLength(1) - 1)
        {
	     //Row and Col must be in range.
             return false;
        }
        //Not empty cell
        if (GetCell(Position) != CellValue.Blank)
        {
            return false;
        }
        CellValue OponentValue = GetCellValueFromPlayerColor(GetOponentValue(cValue));
        int iRowChange;
        int iColChange;
        Position PositionCheck = Position;

        for (iRowChange = -1; iRowChange <= 1; iRowChange++)
        {
            for (iColChange = -1; iColChange <= 1; iColChange++)
            {
                if (iRowChange == 0 && iColChange == 0)
                {
		        // just skip its self cell.
                        continue;
                }
                Boolean HasAtLeasOneOpoonentColor = false;
                PositionCheck = Position.Clone();
                while (true)
                {
                    PositionCheck.Row += iRowChange;
                    PositionCheck.Col += iColChange;

                    if (PositionCheck.Row < 0 ||
                        PositionCheck.Row > 7 ||
                        PositionCheck.Col < 0 ||
                        PositionCheck.Col > 7)
                    {
                        break;
                    }
                       
                    if (CellsByPostion(PositionCheck) == CellValue.Blank)
                    {
                        break;
                    }
                    if (CellsByPostion(PositionCheck) == 
                                       GetCellValueFromPlayerColor(cValue))
                    {
                        if (!HasAtLeasOneOpoonentColor)
                        {
			    //Encounter the same color without meeting the Opponent
			    //Case D5
                            break;
                        }
                        else
                        {
			    //If it can reach this point, it means it already hasAtLeastOne Opponent
			    //Then it meets the same color
			    //Case D1
                            return true;
                        }
                    }
                    if (CellsByPostion(PositionCheck) == OponentValue)
                    {
                        HasAtLeasOneOpoonentColor = true;
                    }
                }
            }
        }
    return false;
}

PutAndAlsoSwithCurrentTurn()

The logic behind this method is similar to IsLegalMove() method. After it called SetCell() method to put the cell value, it needs to loop in all 8 directions, when it finds the position it can flip, it will keep in the PositionFlip object.
After it has finished checking for 8 directions, it will call SetCell methods to flip the cell.

Introduction to AI Part

How Does MiniMax Work

Before I talk about Minimax, I would like to introduce you to a decision tree first. The image below depicts an example of a decision node tree for the Tic Tac Toe game.

  1. There is a blank state.
  2. There are nine possible positions O can put.
  3. There are eight positions that can be put for each of the positions that O puts in #2.
  4. There are seven positions that can be put for each of the positions that X puts in #3.

At #3, there are totally:

  • 81 nodes from 9 + (8 * 9)
  • 72 possibilities from 9 * 8

At #4, there are totally:

  • 585 nodes from 9 + (8 * 9) + (72 * 7)
  • 504 possibilities from 9 * 8 * 7

In total, there are 362,880 possibilities to fill the board with O and X in the 3x3 board size.
This value can be calculated as x = 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2.
However, the number of possible moves in a game of tic-tac-toe will be less than this because some games will end before the board is full.

Node Tree

If there are not too many nodes, we just search every node in the tree till we achieve our end goal.
However, the Reversi game has a tree with roughly 10 ^ 28 nodes.
We utilize Minimax to search for a limit-specific level with the node that is likely to be relevant because it is not practicable to calculate all of them.

There are two parts to the Minimax algorithm.

1. Evaluate Function

It is the function that accepts board value as a parameter and then returns the score. We use this function because we would like to know if our position is good or bad.

// This is the concept
int score = Evaluate(board);

2. Search Tree

It is a recursive tree to find the optimized value.

This is an example of using Minimax minimax algorithm on a tree.

Supposing you need to decide to choose the best weapon to attack your enemy, while your enemy will decide to choose the best shield to protect themselves. Which weapon will you choose?

Node Tree

You are supposed to choose the Maximum value. Your enemy is supposed to choose the Minimum value and this is a Minimax.

BinaryTreeMinimax

The evaluation function will happen only in these six nodes: LShield1, LShield2, FShield1, FShield2, IShield1, IShield2.

These are the order of progress. The value after the : is the value from processing.

  1. LShield1:100
  2. LShield2:200
  3. Lighting = Find Min(LShield1, LShield2) :100
  4. FShield1:110
  5. FShield2:90
  6. Fire= Find Min(FShield1, FShield2) :90
  7. IShield1:120
  8. IShield2:150
  9. ICE= Find Min(IShield1, IShield2) : 120
  10. Which Magic to Attack = Find Max(Lighting, Fire, ICE) :120

The reason why I explain the order of the node to be executed is when the first time I learn Minimax.
I mistakenly think that this is the order being processed.

  1. Lighting:100
  2. Fire:90
  3. ICE:120
  4. LShield1:100
  5. LSheidl2:200
    ...

I was mistaken because the tree image shows the value after every node was calculated. So I don't know what happened first.

The Lighting, Fire, ICE nodes were never be evaluated.
They just use the value from their children nodes, only the leaf node will be evaluated.

Alpha Beta Pruning

Please look at the tree.

(I adjusted the value of FShiled1 to 90.)

BinaryTreeMinimax

According to this tree, you no need to evaluate for FSheild2. The reason that you can eliminate it due to the fact that:

C#
Lighting = MIn(100,200)
Fire = Min(90,?)
Result = Max(Lighting,Fire)

We know that the result will be 100 regardless of the value of FShield2 node.

How do we know?

Let's try to substitute ? with 50 and check the result.

Result = Max(Min(100,200), Min(90,50))
Result = Max(100,50)
Result = 100

Try again, this time we use 300.

Result = Max(Min(100,200), Min(90,300))
Result = Max(100,90)
Result = 100

You can try to change the value in ? and finally, you will get 100 as a result.

You see that when we know these two things:

  1. The Fire node value is 100.
  2. The Minimum value of the Lighting node is less than 90.

We can eliminate the Lighting at all.
The Alpha-beta pruning is used to eliminate the number of nodes when we minimax algorithm. You just use it, but in this example, we only have Beta because our tree is not deep enough, so it only has Min level node.

Alpha stores the best value that Maximizer can guarantee. Its initial value is -Infinity. We can just use int.MinValue instead of -Infinity.
Beta stores the best value that Minimizer can guarantee.
Its initial value is Infinity.
We can just use int.MaxValue instead of Infinity.

With Alpha Beta pruning:

  1. LShield1:100
  2. LShield2:200
  3. Lighting = Find Min(LShield1, LShield2) :100 Set Beta to 100
  4. FShield1:90 Since the value is 90, it is less than Beta, we can ignore the rest of the children of the Fire node.

This is a concept of how we use alpha and beta values in Minimax function. Alpha is for the Maximize player to update. Beta is for the Minimize player to update. You can look into this it will help you more understand. https://bsmith156.github.io/Alpha-Beta-Visualizer/

C#
//This is a concept, not actual function
void Minimax(Node node,
			 int depth,
			 boolean isMaximize, 
			 int alpha, 
			 int beta)
{
	if (depth==0)
	{
		return Evaluation(node.board);
	}
	int bestValue = int.Maxvalue;
	if(isMaximize){
		bestValue = int.Minvalue;
	}
	foreach(Board childboard in node.board.GenerateMoves)
	{
		 Node childnode =new Node(childboard);
		if(isMaximize)
		{
		       ;
			int Score = Minimax(childnode, depth-1,!isMaximize,alpha,beta);
			bestValue = Math.Max(bestValue, Score); 
			alpha = Math.Max(alpha, bestValue);
			if(alpha > beta)
			{
				break;
			}		
		} 
		else 
		{
			int Score = Minimax(childnode, depth-1,!isMaximize,alpha,beta);
			bestValue = Math.Min(bestValue, value);
			beta= Math.Min(beta, bestValue);
			if(alpha > beta)
			{
				break;
			}
		}
	}
	return bestValue
}

The Important Classes that Relate to AI

BasicMiniMaxEvaluate Calculate

How does our evaluation function works?

First, I would like to introduce you to the concept of PositionScore.
In the Reversi game, the corner is considered a good position because it cannot be flipped by an opponent.
Since the corner is good, the cell next to the corner is bad because it allows your opponent to occupy the corner.

XSquare
In this picture, every cell black can put the disk is a bad position because after black, put the disk in these positions, the white will be able to get to the corner immediately.

Position Score

We can set the position score like this. The corner is good so we give it 100, while the next to the corner is bad, we set them to -50 and -100 while for the other cell, we set it to 1.

This evaluation function is strong enough to defeat a relatively inexperienced player, but it has no chance of competing against a Reversi expert.

The problem I found about this PositionScore is it will not choose a cell next to the border despite it being a good position.

Position Score

This picture, it shows that cell G2 is in a good position for black because it will allow him to have a corner at A8.
Not all of the next-to-border cell is bad, sometimes it is good but the program cannot understand.

So I tried to look at a better method to improve AI and I found this article, Reversi by Zdravko Krustev.

For these two functions, I follow the same logic from him.

  • GetNumberofStableDiscsFromCorner()
  • GetStableDiscsFromFullEdge()

After I implemented these two evaluation variables, the AI improved a lot.

Calculate()

  • IsEndGame if the game is ended, this function will just determine the result: win, loss, or draw.
  • IsUseStatbleDiskScore if this value is true, it will call GetNoStableDisk method
  • IsUseScoreFromPosition - In the end, it will compare BotScore with OpponentScore and then return ResultScore.
  • This method will do an evaluation function, it will calculate the score for both sides (Botscore and Opponentscore). Then it returns BotScore - OpponentScore.
  • GetNoofDiskCanBeFlipped() loops through all of the possible moves.

Try to put the disk.

Check how many disks can be flipped, then keep, then add the value.

GetNoStableDisk()

This is a method to check all four corners of the board and all four Edges of the board.

GetNumberofStableDiscsFromCorner()

Then call check all of the full edges on the 4 sides of the board.

Stable Disc from Corner

Stable disk from Corner is that we count the number of the stable from each corner.
In this picture, we count that there are 5 stables disks, we don't count the disk on C2 because it does not follow the pattern.

GetStableDiscsFromFullEdge()

Stable Disc from Full Edge

The stable disk from Full edge is we count that in case of the edge is full, we count how many of our disks are between the opponent.
In this picture, it is 6.

C#
public int getScore(Board board, bool IsMyTurn, Board.PlayerColor BotColor)
{
	var boardphase = board.BoardPhase;
	EvaluateScore BotScore = new EvaluateScore();
	EvaluateScore OpponentScore = new EvaluateScore();

	bool IsUseStatbleDiskScore = this.StableDiskScore != 0;
	bool IsUseAvailableScore = this.ScoreNumberMove(boardphase) != 0;
	// bool IsUseScoreFromPosition = true;

	LogDebugL2("IsUseStatbleDiskScore::" + IsUseStatbleDiskScore);
	LogDebugL2("IsUseAvailableScore::" + IsUseAvailableScore);
	LogDebugL2("IsUseScoreFromPosition::" + IsUseScoreFromPosition);

	int[,] positionScore = PositionScore(boardphase);

	return Calculate(board, IsMyTurn, BotColor,
		BotScore,
		OpponentScore,
		positionScore,
		this.StableDiskScore,
		this.ScoreNumberMove(boardphase),
		IsUseScoreFromPosition);
}

public int Calculate(Board board, bool IsMyTurn, Board.PlayerColor BotColor,
	EvaluateScore BotScore,
	EvaluateScore OpponentScore,
	int[,] ppositionScore,
	int StableDiskScore,
	int MobilityPieceScore,
	Boolean IsUseScoreFromPosition)
{
	bool IsUseStatbleDiskScore = StableDiskScore != 0;

	LogDebugL2("IsUseStatbleDiskScore::" + IsUseStatbleDiskScore);
	LogDebugL2("IsUseScoreFromPosition::" + IsUseScoreFromPosition);

	Board.PlayerColor OppoColor = 
          board.GetOponentValue(BotColor); // ((Board)board).OpponentTurn;
	List<Position> listNoofPossibleMoveForBot = board.generateMoves(BotColor);
	List<Position> listNoofPossibleMoveForOpponent = board.generateMoves(OppoColor);
	BotScore.NoofPossibleMove = listNoofPossibleMoveForBot.Count;
	OpponentScore.NoofPossibleMove = listNoofPossibleMoveForOpponent.Count;

	Boolean IsEndGame = false;
	Boolean IsIWon = false;
	Boolean IsDraw = false;
    // There is no moveable position from both player
	if (BotScore.NoofPossibleMove == 0 &&
		OpponentScore.NoofPossibleMove == 0)
	{
		IsEndGame = true;
	}
       
	if (IsUseScoreFromPosition)
	{
		GetScoreFromPosition((Board)board, ppositionScore, BotColor, BotScore,
			OpponentScore);
	}
	if (IsEndGame)
	{
		LogDebugL2("IsEndGame is true");
		//In case the game is end
		//We just check the disk of both player
		//To decide to result
		BotScore.DiskCount = board.NumberofDisk(BotColor);
		OpponentScore.DiskCount = board.NumberofDisk(OppoColor);
		if (BotScore.DiskCount == OpponentScore.DiskCount)
		{
			IsDraw = true;
			LogDebugL2("IsDraw is true");
		}
		else
		{
			IsIWon = BotScore.DiskCount > OpponentScore.DiskCount;
			LogDebugL2("IsIWon is true");
		}

		if (IsDraw)
		{
			return 0;
		}
		if (IsIWon)
		{
			return WonScore;
		}

		return LostScore;
	}

	Boolean IsINeedtoPass = false;
	Boolean IsEnemyNeedtoPass = false;
	if (OpponentScore.NoofPossibleMove == 0 &&
		BotScore.NoofPossibleMove > 0)
	{
		IsEnemyNeedtoPass = true;
	}

	if (BotScore.NoofPossibleMove == 0 &&
		OpponentScore.NoofPossibleMove > 0)
	{
		IsINeedtoPass = true;
	}

	if (IsEnemyNeedtoPass)
	{
		BotScore.ScorePassWeight += this.ForcePassSocre; //Get score when 
                                                         //we can force to pass
	}
	if (IsINeedtoPass)
	{
		OpponentScore.ScorePassWeight += this.ForcePassSocre; //Opponent get score 
                                                    //when it can force us to pass
	}

	if (IsUseStatbleDiskScore)
	{
		BotScore.NoofStableDisk = GetNoStableDisk(board, BotColor);
		OpponentScore.NoofStableDisk = GetNoStableDisk(board, OppoColor);
		BotScore.ScoreStableDiskWeight = BotScore.NoofStableDisk * StableDiskScore;
		OpponentScore.ScoreStableDiskWeight = 
                      OpponentScore.NoofStableDisk * StableDiskScore;
	}

	BotScore.NoofDiskCanFlip = GetNoofDiskCanBeFlipped
                               (board, BotColor, listNoofPossibleMoveForBot);
	OpponentScore.NoofDiskCanFlip = GetNoofDiskCanBeFlipped
                             (board, OppoColor, listNoofPossibleMoveForOpponent);
	BotScore.ScoreDiskCanFlip = MobilityPieceScore * BotScore.NoofDiskCanFlip;
	OpponentScore.ScoreDiskCanFlip = 
                  MobilityPieceScore * OpponentScore.NoofDiskCanFlip;

	LogDebugL2("===BotScore");
	LogDebugL2("BotScore.NoofPossbleMove::" + BotScore.NoofPossibleMove);
	LogDebugL2("BotScore.NoofStableDisk::" + BotScore.NoofStableDisk);

	LogDebugL2("BotScore.ScoreStableDiskWeight::" + BotScore.ScoreStableDiskWeight);
	LogDebugL2("BotScore.ScorePositionWeight::" + BotScore.ScorePositionWeight);
	LogDebugL2("BotScore.ScorePassWeight::" + BotScore.ScorePassWeight);
	LogDebugL2("BotScore.ScoreDiskCanFlip::" + BotScore.ScoreDiskCanFlip);

	LogDebugL2("===OpponentScore");
	LogDebugL2("OpponentScore.NoofPossbleMove::" + OpponentScore.NoofPossibleMove);
	LogDebugL2("OpponentScore.NoofStableDisk::" + OpponentScore.NoofStableDisk);

	LogDebugL2("OpponentScore.ScoreStableDiskWeight::" + 
                              OpponentScore.ScoreStableDiskWeight);
	LogDebugL2("OpponentScore.ScorePositionWeight::" + 
                              OpponentScore.ScorePositionWeight);
	LogDebugL2("OpponentScore.ScorePassWeight::" + OpponentScore.ScorePassWeight);
	LogDebugL2("OpponentScore.ScoreDiskCanFlip::" + OpponentScore.ScoreDiskCanFlip);
	EvaluateScore ResultScore = BotScore - OpponentScore;

	int ScoreTotal = ResultScore.GetTotalScore();

	return ScoreTotal;
}

public int GetNoStableDisk(Board board, Board.PlayerColor color)
{
    int NofromCorner =
		this.GetNumberofStableDiscsFromCorner(board, color, Corner.TopLeft) +
		this.GetNumberofStableDiscsFromCorner(board, color, Corner.TopRight) +
		this.GetNumberofStableDiscsFromCorner(board, color, Corner.BottomLeft) +
		this.GetNumberofStableDiscsFromCorner(board, color, Corner.BottomRigth);

    int NofromEdge =
		this.GetStableDiscsFromFullEdge(board, color, NEWS.North) +
		this.GetStableDiscsFromFullEdge(board, color, NEWS.East) +
		this.GetStableDiscsFromFullEdge(board, color, NEWS.West) +
		this.GetStableDiscsFromFullEdge(board, color, NEWS.South);

    return NofromCorner + NofromCorner;
}
		
public int GetNumberofStableDiscsFromCorner
       (Board board, Board.PlayerColor color, Position PositionCorner)
{
    int noofDisk = 0;
    int rowDelta = 1;
    int columnDelta = 1;
    if (PositionCorner.Row != 0)
    {
		rowDelta = -1;
    }
    if (PositionCorner.Col != 0)
    {
		columnDelta = -1;
    }

    int LastRow = 7;
    int LastColumn = 7;
    if (PositionCorner.Row != 0)
    {
		LastRow = 0;
    }
    if (PositionCorner.Col != 0)
    {
		LastColumn = 0;
    }
    for (int indexRow = PositionCorner.Row; indexRow != LastRow; indexRow += rowDelta)
    {
		int indexColumn = 0;
		for (indexColumn = PositionCorner.Col; indexColumn != LastColumn; 
                                               indexColumn += columnDelta)
		{
			if (board.boardMatrix[indexRow, indexColumn] != (int)color)
			{
				break;
			}
			noofDisk++;
		}
		Boolean IsThereColumnNeedtoCheck = false;
		IsThereColumnNeedtoCheck =
			(columnDelta > 0 && indexColumn < 7) ||
			(columnDelta < 0 && indexColumn > 0);
		if (!IsThereColumnNeedtoCheck)
		{
			continue;
		}

		LastColumn = indexColumn - columnDelta;
		if (columnDelta > 0 && LastColumn == 0)
		{
			LastColumn++;
		}
		else if (columnDelta < 0 && LastColumn == 7)
		{
			LastColumn--;
		}

		if ((columnDelta > 0 && LastColumn < 0)
		|| (columnDelta < 0 && LastColumn > 7))
		{
			break;
		}
    }
    return noofDisk;
}

public int GetStableDiscsFromFullEdge(Board board, Board.PlayerColor color, NEWS news)
{
    Board.PlayerColor OppositeColor = Board.PlayerColor.Black;
    if (color == Board.PlayerColor.Black)
    {
		OppositeColor = Board.PlayerColor.White;

    }
    if (!IsEdgeFull(board, news))
    {
		return 0;
    }
    int result = 0;
    Position positionBegin = null;
    Position positionEnd = null;
    GetPostionBeginandEnd(news, ref positionBegin, ref positionEnd);

    bool hasFoundOppositeColor = false;
    int NoofRepeatedDisk = 0;
    for (int iRow = positionBegin.Row; iRow <= positionEnd.Row; iRow++)
    {
		for (int iColumn = positionBegin.Col; iColumn <= positionEnd.Col; iColumn++)
		{
		Board.PlayerColor DiskColor = 
              (Board.PlayerColor)board.boardMatrix[iRow, iColumn];
			if (!hasFoundOppositeColor &&
				DiskColor == OppositeColor)
			{
				hasFoundOppositeColor = true;
				NoofRepeatedDisk = 0;
				continue;
			}
			if (hasFoundOppositeColor)
			{
				if (DiskColor == color)
				{
					NoofRepeatedDisk++;
				}
				else
				{
					result += NoofRepeatedDisk;
					NoofRepeatedDisk = 0;
				}
			}
		}
    }
    return result;
}

014 BotConfigure

How to Configure a Bot

You can create or update the bot.

The non-tabs area.

  1. Choose a photo: Just click to choose a photo

  2. Bot Name: The name of the bot

  3. Time limit per move(seconds): Supposing the value is 5, the bot is allowed to use a maximum of 5 seconds per turn.

  4. Stable disk score: This value will be multiplied by the number of stable disks.
    Supposing this value is 20.
    The number of stable disks is 10.
    The Total Stable disk score will be 200 = 20 * 10.

  5. Force pass score: In a Reversi game, when your opponent does not have a valid move, the game will switch to your turn.
    If the position of the board forces your opponent to pass, you can get this score.

  6. Check Use Position Score: If it is not checked, the bot will not use Position Score.

The tabs area.

We have three tabs, and each tab represents the value the bot will use during the game.
We allow configuring the value for Opening, Middle, End Game phases.
N = Number of white disk + Number of black disk;
Beginning : N <= 20
Middle: N <=40
End game: N > 40

  1. Score Position: You see that there is an array of textbox, you can configure the score position.
  2. Score Mobilize: The number of available moves multiplied by Score Mobilize.
    if this value is high, the bot will try to get an available move as much as it can.
  3. Depth Level: You can configure the depth level, I suggest that it should not be more than 7
    so the bot will not take too long to calculate. If you configure this value more than 7, please
    make sure that you have configured the Time limit per move.
  4. Copy cell to Middle, Copy cell to End Game: In case you would like to copy the Score Position to another tab, just click the button.

UI\PanelPositionBotConfigure.cs

This class inherits from Panel, it contains an array of 64 Textboxes to let the user enter the score value for evaluating function.

It allows you use only need to configure the score on A1 to D4 only then the other three parts of the board will change the value to match your A1 to D4 value.

UI\PanelBotConfigure.cs

This class inherits from Panel, it consists of a tab control that has three tab pages: Opening, Middle, and End Game.

Each page contains PanelPositionBotConfigure, Score Mobilize, and Depth Level.

AI\MiniMaxBotProto.cs

This class is a class that implements IPlayer interface, so we just need to implement
MakeMove(AI.IBoard pBoard) method.

The value you configured when you create a bot, will be stored on a file then it will be deserialized then fill into the object from this class.

The main purpose of this class is to just store the evaluation function parameter and then
call the Minimax class to execute it, there is no calculation in this class.

C#
[Serializable]
public class MiniMaxBotProto : IPlayer
{
	//private IEvaluate Evaluate;
	private BasicMiniMaxEvaluate Evaluate = null;
	public MiniMaxBotProto()
	{

	}
	/*
	 These values will be set to Evaluate object.
	 The main purpose of this class is to hold these value
	 */
	public int ForcePassSocre { get; set; } = 1000;
	public int StableDiskScore { get; set; } = 10;
	public int TimeLimitPermove { get; set; } = 3;// Number of second bot 
                                            // allowed to think in each turn.
	// public Boolean AllowRandom { get; set; } = false;

	public int ScoreNumberMoveAtBegingGame { get; set; }
	public int ScoreNumberMoveAtMiddleGame { get; set; }
	public int ScoreNumberMoveAtEndGame { get; set; }

	public int DepthLevelAtBeginGame { get; set; }
	public int DepthLevelAtMiddleGame { get; set; }
	public int DepthLevelAtEndGame { get; set; }
	
	public string BotName { get; set; }

	public string Base64Image { get; set; }
	// public string PhotoFileName { get; set; }
	// As of now don't use FileName, use Base64Image instead.

	/*
	 These are default value of PostionScore
	 For Open, Mid, End game.
	*/
	public int[,] OpenGamePostionScore = new int[,] {
		{ 100, -50, 20, 5, 5, 20, -50, 100},
		{-50 , -70, -5, -5, -5, -5, -70, -50},
		{20  , -5 , 15, 3, 3, 15, -5, 20},
		{5   , -5 , 3, 3, 3, 3, -5, 5},
		{5   , -5 , 3, 3, 3, 3, -5, 5},
		{20  , -5 , 15, 3, 3, 15, -5, 20},
		{-50 , -70, -5, -5, -5, -5, -70, -50},
		{100 , -50, 20, 5, 5, 20, -50, 100}
	};

	public int[,] MidGamePostionScore = new int[,] {
		{ 140, -20, 20, 5, 5, 20, -20, 140},
		{-20 , -40, -5, -5, -5, -5, -40, -20},
		{20  , -5 , 15, 3, 3, 15, -5, 20},
		{5   , -5 , 3, 3, 3, 3, -5, 5},
		{5   , -5 , 3, 3, 3, 3, -5, 5},
		{20  , -5 , 15, 3, 3, 15, -5, 20},
		{-20 , -40, -5, -5, -5, -5, -40, -20},
		{140 , -20, 20, 5, 5, 20, -20, 140}
	};

	public int[,] EndGamePostionScore = new int[,] {
		{ 20, -5, 10, 5, 5, 10, -5, 20},
		{-5 , -10, 5, 5, 5, 5, -10, -5},
		{20  , 5 , 5, 5, 5, 5, 5, 10},
		{5   , 5 , 5, 5, 5, 5, 5, 5},
		{5   , 5 , 3, 5, 5, 5, 5, 5},
		{10  , 5 , 5, 5, 5, 5, 5, 10},
		{-5 , -10, 5, 5, 5, 5, -10, -5},
		{20 , -5, 10, 5, 5, 10, -5, 20}
	};

	public int DepthLevel(Board.BoardPhaseEnum boardPhase)
	{
		//Select depth level according to the BoardPhase
		int depthLevel = 0;
		switch (boardPhase)
		{
			case Board.BoardPhaseEnum.Begining:
				depthLevel = DepthLevelAtBeginGame;
				break;
			case Board.BoardPhaseEnum.Middle:
				depthLevel = DepthLevelAtMiddleGame;
				break;
			case Board.BoardPhaseEnum.EndGame:
				depthLevel = DepthLevelAtEndGame;
				break;
			default:
				depthLevel = 1;
				break;
		}
		if (depthLevel < 1 ||
				depthLevel > 10)
		{
			throw new Exception("Depth level is invalid");
		}

		return depthLevel;
	}
	public void FillEvaluateObject()
	{
		// this.Evaluate.ScoreNumberMoveAtBegingGame = this.ScoreNumberMoveAtBegingGame;

		this.Evaluate = new BasicMiniMaxEvaluate(this);
	}

	public bool IsUseScoreFromPosition = true;

	[NonSerialized()]
	public bool IsAllowRandomDecision = false;

	[NonSerialized()]
	public bool IsKeepLastDecisionTree = false;

	[NonSerialized()]
	public bool IsUsingAlphaBeta = false;

	[NonSerialized()] MiniMax m = null;
	public Position MakeMove(IBoard pBoard)
	{
	    // Using Minimax class to call calulcatNextMove() method
		Board.PlayerColor BotColor = ((Board)pBoard).CurrentTurn;
		int depthLevel = DepthLevel(((Board)pBoard).BoardPhase);

		Utility.TimeMeasure time = new Utility.TimeMeasure();
		time.Start();
		Boolean IsSortedNode = true;
		if (m == null)
		{
			m = new MiniMax();
		}
		Position result = m.calculateNextMove(pBoard,
			depthLevel,
			Evaluate,  // Evaluation object
			BotColor,
			this.TimeLimitPermove,
			IsUsingAlphaBeta, 
			IsKeepLastDecisionTree,// For viewing Minimax node later.
			IsAllowRandomDecision, // To prevent bot vs bot playing the same everytime.
			IsSortedNode           // For better performance, 
                                   // sort the node at some depth level
			);
		time.Finish();
		String strTemp = time.TimeTakes.Seconds.ToString();
		return result;
	}
	public static MiniMaxBotProto CreateBot(String fileName)
	{
		MiniMaxBotProto Newbot = 
               Utility.SerializeUtility.DeserializeMinimaxBot(fileName);
		Newbot.FillEvaluateObject();
		return Newbot;
	}
	public static MiniMaxBotProto CreateBot()
	{
		//These are default values
		//They will be used in case we don't load Botvalue then FillEvaluateObject
		//
		MiniMaxBotProto minimaxBorProto = new MiniMaxBotProto();
		minimaxBorProto.DepthLevelAtBeginGame = 2;
		minimaxBorProto.DepthLevelAtMiddleGame = 3;
		minimaxBorProto.DepthLevelAtEndGame = 5;

		minimaxBorProto.ScoreNumberMoveAtBegingGame = 10;
		minimaxBorProto.ScoreNumberMoveAtMiddleGame = 40;
		minimaxBorProto.ScoreNumberMoveAtEndGame = 20;

		minimaxBorProto.DepthLevelAtBeginGame = 2;
		minimaxBorProto.DepthLevelAtMiddleGame = 2;
		minimaxBorProto.DepthLevelAtEndGame = 2;

		//IEvaluate Evu = new BasicMiniMaxEvaluate();
		minimaxBorProto.Evaluate = new BasicMiniMaxEvaluate(minimaxBorProto);
		return minimaxBorProto;
	}
}

Keep the Score in the Cache

Duplicate Node

This picture shows an example of a duplicate node.

Hash.cs

When we create a search tree for the Minimax function, there is a chance that the tree node will have a duplicate value for another tree node. If that case happens, we don't want to do the evaluation again, so we decide to keep the score value in the hash object.

Every time we call the evaluation function to calculate the score from the board. We keep the score value in this Hash object, the next time when there is a duplicate node appears, we just retrieve the value that we already stored.

We also need to keep the depth level because the same board position has different scores for different levels.

C#
public class Hash
{
	public static int ScoreForNonExist = int.MaxValue / 2;

	public static int GetHashForBoard(Board board)
	{
	    /* We need to use GetHashCode() multiple with the current turn
		because we need to know if it it black or white  turn.
		GetHashCode is just a function to calculate hash by simply
		multiple with each member value.
		It can be improved to use XOR hash function.		
		*/
		return board.GetHashCode() * (int)board.CurrentTurn ;
	}
	
	/* For DicHash
		int is Hashvalue
		Dictionary<int,int>	is DicDepthScore
	   For DicCepthScore
	        First int is the depth level
		Second int is the score.	
	*/
	private Dictionary<int, Dictionary<int, int>> DicHash = 
                       new Dictionary<int, Dictionary<int, int>>();
	private Dictionary<int, int> DicEvoScore = new Dictionary<int, int>();
	public int NumberofNodeCount()
	{
		int NumberofNodeCount = 0;
		foreach (int HashBoard in DicHash.Keys)
		{
			foreach (int DepthExist in DicHash[HashBoard].Keys)
			{
				NumberofNodeCount++;
			}
		}
		NumberofNodeCount += DicEvoScore.Count;
		return NumberofNodeCount;
	}
	/*
	Add new hash and evaluated score value
	We also need Depth parameter because the same board position
	with different depth return the different value
	*/
	public void Add(int HashCodeForBoard, int Score, int Depth)
	{
		Dictionary<int, int> DicDepthScore = new Dictionary<int, int>();
		if (DicHash.ContainsKey(HashCodeForBoard))
		{
			//if this board value already exist
			//Search for the depth
			DicDepthScore = DicHash[HashCodeForBoard];
			if(DicDepthScore.ContainsKey(Depth))
			{
				return;
			}
			foreach(int DepthExist in DicDepthScore.Keys)
			{
				if(DepthExist >=Depth)
				{
					return;
				}
			}
			
		} else
		{
			DicHash.Add(HashCodeForBoard, DicDepthScore);
		}
		DicDepthScore.Add(Depth, Score);

	}
	public void AddEvalScore(int HashCodeForBoard, int Score)
	{
		// Dic
		if(DicEvoScore.ContainsKey(HashCodeForBoard))
		{
			return;
		}
		DicEvoScore.Add(HashCodeForBoard, Score);
	}
	public int GetEvalScore(int HashCodeForBoard)
	{
		if(DicEvoScore.ContainsKey(HashCodeForBoard))
		{
			return DicEvoScore[HashCodeForBoard];
		}
		return ScoreForNonExist;
	}

	public int GetScore(int HashCodeForBoard, int DepthLeast)
	{
		if (!DicHash.ContainsKey(HashCodeForBoard))
		{
			return ScoreForNonExist;
		}
		foreach (int DepthExist in DicHash[HashCodeForBoard].Keys)
		{
			if(DepthLeast <= DepthExist)
			{
				return DicHash[HashCodeForBoard][DepthExist];
			}
		}
		return ScoreForNonExist;
	}

	public Boolean ContainScore(int HashCodeForBoard, int DepthLeast)
	{
		return GetScore(HashCodeForBoard, DepthLeast) != ScoreForNonExist;
	}
	public Boolean ContainEvalScore(int HashCodeForBoard)
	{
		return GetEvalScore(HashCodeForBoard) != ScoreForNonExist;
	}
}

MinimaxParameterExtend.cs

We use this class to store the value of the minimax parameter.
Actually, you don't need this class to use a minimax function.
I created this class because I need to keep the List of MinimaxParameterExtend as a child because
I need to show it later to the people who would like to learn how minimax works.

C#
[Serializable]
public class MiniMaxParameterExtend : MiniMaxParameter
{
	public List<MiniMaxParameterExtend> child = 
        new List<MiniMaxParameterExtend>(); //We keep the children nodes here.
	public PositionScore PositionScore { get; set; } = 
        new PositionScore();                // The selected position and its score.
	public MiniMaxParameterExtend CloneExtendWithoutBoard()
	{
		MiniMaxParameterExtend CloneObject = new MiniMaxParameterExtend();
		CloneObject.Depth = this.Depth;
		CloneObject.IsMax = this.IsMax;
		CloneObject.Alpha = this.Alpha;
		CloneObject.Beta = this.Beta;
		CloneObject.BotColor = this.BotColor;
		if (this.PositionScore != null)
		{
			CloneObject.PositionScore = this.PositionScore.ClonePositionScore();
		}
		return CloneObject;
	}
	public MiniMaxParameterExtend CloneExtend()
	{
		MiniMaxParameterExtend CloneObject = CloneExtendWithoutBoard();
		CloneObject.board = (Board)this.board.Clone();
		return CloneObject;
	}
} 

MiniMax.cs

C#
calculateNextMove()

This method is just for preparing a parameter to call MinimaxAlphaBetaExtend()

C#
MinimaxAlphaBetaExtend()
  1. If it is not the final move, check need to pass.
    If the Bot color doesn't have a valid move switch to the opponent's color, then check if it has a valid move or not.
    If both colors have no valid move, set IsFinalMove=true

  2. If it is the final move, check from the hash if this position is already calculated and store it in the hash or not.
    If it is, get the Score from the hash.
    If it is not, call evaluate board function then store the score in a hash.
    Return score.

  3. It relates to sorting available moves.
    The program will try to evaluate the score from the board and then try to sort the available moves.
    We don't do this on every depth level.
    The result from #3 will be sent to #4.

  4. This is a part where we do the minimax.
    Loop through all of the Positions in the available move.
    Check if it can get a score from hash or not.
    If it cannot, just call MinimaxAlphaBetaExtend to get the childScore.
    Store it in the hash object.
    The result of this method is just ordinary minimax.

C#
public Position calculateNextMove(IBoard board,
	int depth,
	IEvaluate pEvaluateObject,
	Board.PlayerColor BotColor,
	int SecondsLimitPerMove,
	Boolean IsUsingAlphaBeta,
	Boolean IsKeepingChildValue,
	Boolean IsUsingRandomIfNodeValueIsTheSame,
	Boolean IsSortedNode)
{
	Log("CalculateNextMove begin");

	EvaluateObject = pEvaluateObject;

	Position move = new Position(-1, -1);

	PositionScore bestMove = new PositionScore();

    //This Para object will be sent to MinimaxAlphaBetaExtend()
	MiniMaxParameterExtend Para = new MiniMaxParameterExtend();

	Para.Depth = depth - 1;
	Para.board = (Board)board.Clone();
	Para.IsMax = true; // The initial node is for Maximum player
	Para.Alpha = int.MinValue; // Initial value of Alpha
	Para.Beta = int.MaxValue;  // Initial value of Beta
	Para.BotColor = BotColor;
	NodeCount = 0; 
	EvaluateCount = 0;
	EndTime = DateTime.Now.AddSeconds(SecondsLimitPerMove); // The end time 
                                                            // that allows bot to use 
	Log("CalculateNextMove :: SecondLimitPerMove ::" + SecondsLimitPerMove);
	Log("CalculateNextMove :: Depth ::" + Para.Depth);


	Utility.TimeMeasure timeM = new Utility.TimeMeasure(); // To keep track how long 
                                                           // it takes
	iCountHashCanAccess = 0; //Keep track number of time Hash object can be access
	timeM.Start();
	this.FirstLevelDepth = Para.Depth;
	listFirstLevelDepthMoves = new List<PositionScore>();
	PositionScore score = MinimaxAlphaBetaExtend(Para,
		IsUsingAlphaBeta, 
		IsKeepingChildValue, // To show Minimax later
		IsSortedNode);       // Improve searching by tryting to sort fist
	move = new Position(score.Row,
		score.Col);
	timeM.Finish();

	Log("CalculateNextMove :: [" + score.Row + "," + score.Col + "]");
	Log("CalculateNextMove :: Score::" + score.Score);
	Log("CalculateNextMove :: iCountHashCanAccess::" + iCountHashCanAccess);
	Log("CalculateNextMove ::  Before Get Random");
          
	if (Para.board.NumberofBothDisk() <= 14)
	{
	    // Random decision if Number of disk on board is <= 14
		// This feature exists to prevent bot vs bot 
        // select the same position everytime
		if (IsUsingRandomIfNodeValueIsTheSame)
		{
			Log("CalculateNextMove ::  IsUsingRandomIfNodeValueIsTheSame");
			score = GetRandomFromMaxScoreNode(listFirstLevelDepthMoves);

			move = new Position(score.Row,
				score.Col);
		}
	}

	//NodeCount = 0;
	Log("CalculateNextMove :: hashTranportable :: " + 
                              hashTranportable.NumberofNodeCount());

	Log("CalculateNextMove :: [" + score.Row + "," + score.Col + "]");
	Log("CalculateNextMove :: Score::" + score.Score);
	Log("CalculateNextMove :: NodeCount ::" + NodeCount);
	Log("CalculateNextMove :: EvaluateCount ::" + EvaluateCount);
	Log("CalculateNextMove :: Time takes (Seconds)::" + 
                              timeM.TimeTakes.Milliseconds / 1000.00);
	Log("CalculateNextMove End");

	ClearMinimaxForDebug();
	_MiniMaxForDebug = Para;
	// Save MimimaxFor debug, to show later
	Utility.SerializeUtility.SerializeMiniMaxParameterExtend(_MiniMaxForDebug,
		Utility.FileUtility.MiniMaxParameterForDebugFilePath
		);

	return move;
}

private PositionScore MinimaxAlphaBetaExtend(
 MiniMaxParameterExtend Para,
 Boolean IsUsingAlphaBeta,
 Boolean IsKeepingChildValue,
 Boolean IsSortedNode
)
{
	String tab = Tab(Para.Depth);
	String methodName = tab + "Minimax::";
	NodeCount++;

	Board.PlayerColor DiskColor = Para.BotColor;
	Board.PlayerColor OpponentColor = 
          ((Board)Para.board).GetOponentValue(Para.BotColor);

	LogDebug(methodName + "IsMax::" + Para.IsMax);
	if (!Para.IsMax)
	{
		DiskColor = OpponentColor;
	}
	Boolean IsMyTurn = false;
	if (DiskColor == Para.BotColor)
	{
		IsMyTurn = true;
	}
	if (IsExceedTimeLimitPermove())
	{
		LogDebug(methodName + " Exceed Time");
	}
	bool IsNeedtoPass = false;

	List<Position> avilableMovePositions = new List<Position>();
	bool isFinalMove = false;
	if (Para.Depth <= 0 || IsExceedTimeLimitPermove())
	{
		isFinalMove = true;
	}

	LogDebug(methodName + "IsFinalMove::" + isFinalMove);
	if (!isFinalMove)
	{
		avilableMovePositions = Para.board.generateMoves();
		if (avilableMovePositions.Count == 0)
		{
			LogDebug(methodName + "possbileMove.Count of " + DiskColor + "is 0 ");
			IsNeedtoPass = true;
			List<Position> avilableMovePositionsForOppositeColor = null;
			if (DiskColor == Para.BotColor)
			{
				avilableMovePositionsForOppositeColor = 
                            ((Board)Para.board).generateMoves(OpponentColor);
				DiskColor = OpponentColor;
				LogDebug(methodName + "Gen possbileMove from OpponentColor it is " 
                                    + avilableMovePositions.Count);
			}
			else
			{
				avilableMovePositionsForOppositeColor = 
                        ((Board)Para.board).generateMoves(Para.BotColor);
				DiskColor = Para.BotColor;
				LogDebug(methodName + "Gen possbileMove from BotColor it is " 
                                    + avilableMovePositions.Count);
			}

			avilableMovePositions = avilableMovePositionsForOppositeColor;
		}

		if (avilableMovePositions.Count == 0)
		{
			isFinalMove = true;
		}
	}

	PositionScore BestScore = new PositionScore(-1, -1);

	/* If it is final move, 
	   calculate the score then return
	*/
	if (isFinalMove)
	{
		int BoardHash = Hash.GetHashForBoard(Para.board);
		int Score = 0;
		if (hashTranportable.ContainEvalScore(BoardHash))
		{
			iCountHashCanAccess++;
			Score = hashTranportable.GetEvalScore(BoardHash);
		}
		else
		{
			EvaluateCount++;
			Score = this.EvaluateObject.evaluateBoard
                    (Para.board, IsMyTurn, Para.BotColor);

			hashTranportable.AddEvalScore(BoardHash, Score);
			LogDebug("hashPutEvalScore::" + 
                      Para.board.LastPutPosition.PositionString());
		}

		LogDebug(methodName + "Score::" + Score);
		BestScore = new PositionScore(Score, -1, -1);
		return BestScore;
	}

	BestScore = new PositionScore(int.MaxValue, -1, -1);
	if (Para.IsMax)
	{
		BestScore.Score = int.MinValue;
	}
	// For Supporting sort node before doing Minimax
	// We don't sort the node at everydepth 
	if (IsSortedNode && Para.Depth >= this.FirstLevelDepth - 1)
	{
		LogDebug(methodName + "IsSortedNode is true");
		List<PositionScore> lstPostion = new List<PositionScore>();

		Dictionary<int, Board> DicBoard = new Dictionary<int, Board>();
		LogDebug(methodName + "Begin calculate score");
		foreach (Position nextMove in avilableMovePositions)
		{
			Board tempBoard = (Board)Para.board.Clone();

			tempBoard.PutAndAlsoSwithCurrentTurn(nextMove, DiskColor);
			EvaluateCount++;
			int Score = this.EvaluateObject.evaluateBoard
                        (tempBoard, IsMyTurn, Para.BotColor);

			lstPostion.Add(new PositionScore(Score, nextMove.Row, nextMove.Col));
			DicBoard.Add(nextMove.GetHashCode(), tempBoard);

			LogDebug(methodName + "   Score::" + Score);
			LogDebug(methodName + "        move::" + nextMove.PositionString());
		}
		LogDebug(methodName + "End calculate score");
		List<PositionScore> SortedList = null;

		if (Para.IsMax)
		{
			SortedList = lstPostion.OrderByDescending(o => o.Score).ToList();
		}
		else
		{
			SortedList = lstPostion.OrderBy(o => o.Score).ToList();
		}

		LogDebug("Max Begin ViewSortedList");
		avilableMovePositions.Clear();
		foreach (PositionScore move in SortedList)
		{
			LogDebug(methodName + "   Score::" + move.Score);
			LogDebug(methodName + "        move::" + move.PositionString());

			avilableMovePositions.Add(new Position(move.Row, move.Col));
		}		
	}
	// End For Supporting sort node before doing Minimax

	//Begin doing Minimax
	LogDebug(methodName + "Before loop");
	foreach (Position nextMove in avilableMovePositions)
	{
		LogDebug(methodName + "  position[" + nextMove.Row + "," + nextMove.Col + "]");
		MiniMaxParameterExtend childPara = Para.CloneExtend();

		LogDebug(methodName + "DiskColor::" + DiskColor);

		((Board)childPara.board).PutAndAlsoSwithCurrentTurn(nextMove, DiskColor);
		LogDebug(methodName + " After put");
		// For Viewing Minimax later
		if (IsKeepingChildValue)
		{
			Para.child.Add(childPara);
		}

		childPara.IsMax = !Para.IsMax;

		if (IsNeedtoPass)
		{
			childPara.IsMax = Para.IsMax;
			((Board)childPara.board).SwitchTurnDueToPlayerPass();
		}

		childPara.Depth--;

		int Score = 0;
		int BoardHash = Hash.GetHashForBoard(childPara.board);

		PositionScore childScore = null;
		int ScoreFromHash = hashTranportable.GetScore(BoardHash, childPara.Depth);
		if (ScoreFromHash != Hash.ScoreForNonExist)
		{
			iCountHashCanAccess++;
			childScore = new PositionScore(hashTranportable.GetScore
                                          (BoardHash, childPara.Depth));
		}
		else
		{
			childScore = this.MinimaxAlphaBetaExtend
            (childPara, IsUsingAlphaBeta, IsKeepingChildValue, IsSortedNode);
			hashTranportable.Add(BoardHash, childScore.Score, childPara.Depth);
			LogDebug("hashPut::" + nextMove.PositionString() + " depth::" + 
                      childPara.Depth + "::CUrrentTurn:: " + 
                      childPara.board.CurrentTurn + " :: BoardHash::" + BoardHash);
			//hashTranportable.Add(BoardHash, childScore.Score);
		}
		childPara.PositionScore = new PositionScore(childScore.Score, nextMove);

		if (Para.Depth == this.FirstLevelDepth)
		{
			LogDebug("First Level::" + nextMove.PositionString() + "   ::" + 
                      childScore.Score);
			listFirstLevelDepthMoves.Add
                (new PositionScore(childScore.Score, nextMove));

		}
		LogDebug(methodName + "  childScore.Score::" + childScore.Score);
		if (Para.IsMax)
		{
			LogDebug(methodName + "  BestScore.Score::" + BestScore.Score);
			if (childScore.Score > BestScore.Score)
			{
				LogDebug(methodName + "  childScore.Score  > BestScore.Score");
				BestScore = new PositionScore(childScore.Score, nextMove);
				if (IsUsingAlphaBeta)
				{
					Para.Alpha = Math.Max(BestScore.Score, Para.Alpha);

					if (Para.Beta < BestScore.Score)
					{
						LogDebug(methodName + "  BoardValue >= Beta");
						break;
					}
				}
			}
		}
		else
		{
			LogDebug(methodName + "  BestScore.Score::" + BestScore.Score);
			if (childScore.Score < BestScore.Score)
			{
				LogDebug(methodName + "  childScore.Score  < BestScore.Score");

				BestScore = new PositionScore(childScore.Score, nextMove);
				if (IsUsingAlphaBeta)
				{
					Para.Beta = Math.Min(Para.Beta, BestScore.Score);

					if (BestScore.Score <= Para.Alpha)
					{
						LogDebug(methodName + "  BoardValue <= Alpha");
						break;
					}
				}
			}
		}
	}
	LogDebug(methodName + "After Loop");
	return BestScore;
}

Show Minimax Latest Move

Show Minimax

You can click on Game->Show MiniMax Latest Move menu.

Please make sure that Player 2 is a bot.

Explain some of the values in this picture.
9[F5]Min mean
9 is the min value of these below nodes (9, 10, 10, 10, 10, 10)

12[] Max mean
12 is the max value of the below nodes (9, 7, 12, 7)

-4[D1] Leaf mean - This is a leaf node, the evaluation function was executed on this node the value -4.

Testing

Testing

You can just run all of the unit and integration tests.
Please make sure it passes all of them, but you can skip BotFightTest because it takes about 20 seconds to finish.

What Can We Do To Improve

If we need to improve the program, these are some things we can do to strengthen AI.

  1. Change the data structure of the board from a 2D array to a bitboard.
  2. Include Openbook features; we calculate the evaluation in advance to save it in a file, then we simply get the value from it without having to calculate it again.
  3. XOr hash should be used instead of this hash function.

Point of Interest

There are many features that I did not intend to include in the first place, such as creating a board or a bot, but after developing them, I realized that they greatly aided me in finding bugs and fixing programs.

References

History

  • 6th December, 2022: Initial version

License

This article, along with any associated source code and files, is licensed under The MIT License


Written By
Thailand Thailand
Hi. My name is Krirk Srithaweewath, I am a C# developer from Thailand.
I always create puzzle games on my free time.


Comments and Discussions

 
Praisegreat implementation Pin
Southmountain10-Dec-22 14:01
Southmountain10-Dec-22 14:01 

General General    News News    Suggestion Suggestion    Question Question    Bug Bug    Answer Answer    Joke Joke    Praise Praise    Rant Rant    Admin Admin   

Use Ctrl+Left/Right to switch messages, Ctrl+Up/Down to switch threads, Ctrl+Shift+Left/Right to switch pages.